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Abstract

N-3 polyunsaturated fatty acids (PUFAs) from fish oil exert their functional effects by targeting multiple mechanisms. One mechanism to emerge in the past
decade is the ability of n-3 PUFA acyl chains to perturb the molecular organization of plasma membrane sphingolipid/cholesterol-enriched lipid raft domains.
These domains are nanometer-scale assemblies that coalesce to compartmentalize select proteins for optimal function. Here we review recent evidence on how
n-3 PUFAs modify lipid rafts from biophysical and biochemical experiments from several different model systems. A central theme emerges from these studies.
N-3 PUFA acyl chains display tremendous conformational flexibility and a low affinity for cholesterol and saturated acyl chains. This unique flexibility of n-3
PUFA acyl chains impacts the organization of inner and outer leaflet lipid rafts by disrupting acyl chain packing and molecular order within rafts. Ultimately,
the disruption in raft organization has consequences for protein clustering and thereby signaling. Overall, elucidating the complex mechanisms by which n-3
PUFA acyl chains reorganize membrane architecture will enhance the translation of these fatty acids into the clinic for treating several diseases.
© 2012 Elsevier Inc. All rights reserved.
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1. Consumption of fish oil has health benefits

Dietary consumption of fish oil is increasingly recognized to have
beneficial health effects, especially for the prevention or treatment of
specific diseases. As examples, fish oil intake is associated with
decreased risk for coronary heart disease, and prescription fish oil
supplements lower serum triglycerides [1,2]. There is also emerging
evidence that fish oil has immunosuppressive properties, which may
have clinical applications for the treatment of symptoms associated
with autoimmune and inflammatory diseases [3]. Finally, there is
some suggestion that fish oil may lower the risk of cognitive
disorders, prevent the progression of specific cancers and improve
insulin sensitivity [4,5].

One major obstacle in effectively translating fish oil into the clinic
for the treatment of some of the aforementioned afflictions is a
limited understanding of its molecular mechanisms. The bioactive
components of fish oil are the n-3 polyunsaturated fatty acids (PUFAs)
eicosapentaenoic (EPA, 20:5) and docosahexaenoic (DHA, 22:6) acids.
Mechanistically, these fatty acids modify gene expression, give rise to
bioactive oxygenated metabolites known as resolvins and protectins,
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disrupt cellular signaling and protein trafficking, and modify plasma
membrane domains [6,7]. This review focuses on recent advances in
n-3 PUFA and plasma membrane lipid raft domain research.

2. Lipid rafts are a molecular target of N-3 PUFAs

Lipid rafts are operationally defined as sphingolipid/cholesterol-
enriched domains that under specific circumstances serve to
compartmentalize signaling [8]. Since the inception of the lipid raft
model, there has been considerable debate on their existence,
composition, size and lifetime. Much of the controversy arose from
the use of indirect methods to study rafts, predominately, the use of
biochemical detergent extraction, which has utility as a predictive
tool but can also introduce artifacts [9]. Recent advances in lipidomics
and high-resolution imaging, which resolves domain sizes below the
diffraction limit of a microscope, have provided stronger evidence for
the existence of lipid rafts [10].

The current model proposes that lipid rafts are fluctuating
assemblies that exist as nanometer-sized domains [10]. In response
to stimuli such as a ligand binding to its receptor, the nanometer-scale
domains coalesce. The coalesced domains are larger in size, up to the
micrometer-size scale, and display high molecular order relative to
the surrounding nonrafts [10]. The formation of these ordered
domains is driven by favorable molecular interactions between
sphingolipids and cholesterol and is regulated by the underlying
actin cytoskeleton. Lipid raft domains are not limited to the plasma
membrane; for instance, they exist in intracellular organelles such as
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the Golgi where they regulate protein trafficking [10]. Their existence
is questionable in other endomembranes; for instance, mitochondrial
membranes, which have low levels of cholesterol, are unlikely to form
rafts [11].

A key component of the lipid raft model is that coalescence of
nanometer-scale assemblies, driven by both lipid–lipid and lipid–
protein interactions, serves to enhance or optimize the function
of specific plasma membrane proteins [10]. Compartmentalization
of signaling is central to the lipid raft concept and is a target of n-3
PUFAs [12].
3. Biophysical studies on an atomic scale show N-3 PUFAs adopt
unique molecular orientations that do not pack efficiently with
raft molecules

Some of our understanding of how n-3 PUFAs from fish oil impact
the physical organization of membranes comes from biophysical
experiments using model membranes (e.g., lipid vesicles, supported
bilayers, monolayers) and molecular dynamic (MD) simulations [13].
The advantage of model membrane and MD simulation studies is
they provide a highly controlled environment for investigating the
dynamic nature of n-3 PUFA acyl chains in the presence of
sphingolipids and/or cholesterol. Of course, this approach has a
major limitation, that is, they are not an accurate depiction of the
plasma membrane that contains hundreds of different lipid species
and proteins. Nevertheless, these studies provide mechanistic details
on an atomic scale that are not readily discerned from cellular studies.

The majority of work on n-3 PUFAs in model membranes has
focused on DHA [14]. The molecular structure of DHA is unique. It is
somewhat polar due to the presence of six double bonds and is highly
flexible with rapid reorientations through multiple conformational
states [15]. A combination of nuclear magnetic resonance (NMR),
neutron diffraction and MD simulations shows that the DHA acyl
chain can be displaced toward the head-group region, with the
terminal methyl at times approaching the water interface (Fig. 1)
[16–19]. Addition of cholesterol can partially redistribute the DHA
acyl chain toward the bilayer center, but the ordering effect of
cholesterol is still more pronounced when cholesterol interacts with
saturated acyl chains [20].

The flexible and therefore disordered structure of DHA renders it
incompatible with surrounding ordered saturated acyl chains and
cholesterol. Rosetti and Pastorino very recently reported with MD
simulations that DHA acyl chains do not pack efficiently with
saturated acyl chains [21]. Similarly, we reported, in collaboration
with others, that DHA-containing phospholipids did not mix ideally
Fig. 1. DHA acyl chains adopt unique conformations. The different conformational
states of DHA were obtained with molecular dynamic simulations. The images show
that the DHA acyl chain is highly flexible and that the terminal methyl can even
approach the head-group region. This degree of flexibility likely contributes to its
ability to disrupt lipid raft molecular organization. The figure was obtained with
permission from the Feller lab.
with sphingolipids with predominately saturated acyl chains in the
absence of cholesterol [22].

The Stillwell and Wassall labs over the past decade have
demonstrated a packing inability between saturated acyl chains and
DHA, which was further enhanced in the presence of cholesterol [14].
Spectroscopic and calorimetric studies from their labs established
that DHA-containing phosphatidylcholines and phosphatidylethanol-
amines have a low affinity for cholesterol in the presence of
sphingomyelin [23,24].Their NMR data suggest that DHA-containing
phospholipids are forming their own organizationally distinct
domains (b20 nm in size) in the presence of sphingolipids and
cholesterol as a mechanism to avoid saturated acyl chains and
cholesterol [23]. Lately, novel data from the Katsaras andWassall labs
imply that the presence of select PUFAs in the membrane can force
cholesterol to adopt unusual orientations in the membrane, for
instance, forcing the polar hydroxyl group of cholesterol to be buried
into the interior of the bilayer [25,26].

Overall, model membrane and MD simulation data suggest that
when disordered DHA acyl chains incorporate into the plasma
membrane of cells, they do not pack efficiently with saturated acyl
chains or cholesterol, both of which are essential for the formation of
lipid rafts.

4. Biochemical studies in vitro and ex vivo demonstrate that
N-3 PUFAs disrupt detergent resistant “rafts” and associated
protein distribution

The initial observation of how n-3 PUFAs disrupted lipid domain
organization in cells came from studies using biochemical detergent
extraction [27–29]. For instance, the Stulnig lab showed that
treatment of T-cells with n-3 PUFAs modified detergent resistant
membranes (DRMs), which are a crude cellular fraction that sup-
posedly represents cellular “lipid rafts” (we use quotes to remind the
reader that DRMs are not the same as lipid rafts) [27]. A significant
proportion of n-3 PUFA was localized into DRMs, with the remaining
portion in “nonraft” detergent soluble membranes (DSMs). The in-
triguing aspect of this work was that proteins localized in DRMs were
displaced in response to n-3 PUFA treatment.

More recent in vitro and ex vivo measurements in several cell
types have verified the basic hypothesis that n-3 PUFAs incorporate
directly into DRMs to displace proteins either into or out of these
“raft”-like fractions [30–36]. In some cell types, n-3 PUFAs lower the
levels of cholesterol and sphingolipids in the DRMs [31]. Grimm et al.
recently demonstrated that treatment of SH-SY5Y cells with DHA
displaced cholesterol from DRMs to DSMs [37]. We and others have
also observed a trend for cholesterol to move from DRMs to DSMs
with DHA treatment [29,38,39]. Thus, DHA and perhaps EPA may be
promoting the displacement of cholesterol from DRMs to DSMs,
which is consistent with NMR and X-ray diffraction data that show
DHA has a low affinity for cholesterol [14,40]. Once the cholesterol
is displaced toward nonrafts, it is likely to associate with saturated
acyl chains.

Several questions arise from the biochemical detergent extrac-
tion experiments: (a) How does one effectively connect findings from
different model systems: i.e., model membranes, in vitro, ex vivo
data? (b) Are n-3 PUFAs exerting their effects by directly incorporat-
ing into lipid rafts? Alternatively, are n-3 PUFAs exerting their effects
indirectly on rafts (e.g., by targeting the cytoskeleton, nonraft
domains, etc.)? (c) What is the molecular nature of lipid rafts upon
incorporation of n-3 PUFAs into the raft? In other words, are these
domains still ordered rafts or are they simply disrupted rafts? (d)
Where are n-3 PUFA acyl chains localizing to (e.g., what lipid species,
which membrane leaflet, etc.)? To address these questions, sophis-
ticated imaging and lipidomic methods are starting to provide
some insights.
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5. Quantitative imaging and lipidomics reveal that N-3 PUFAs
disrupt raft composition and molecular order to alter
protein distribution

Recently, several labs, including our own, have corroborated bio-
chemical methods with quantitative imaging methods to address
some of the aforementioned questions on how n-3 PUFAs disrupt
lipid rafts. We very recently reported using a combination of confocal
and FRET (Förster resonance energy transfer) imaging to show that,
in vitro and ex vivo, n-3 PUFAs selectively disrupted the clustering of
lipid rafts of EL4 and B cells [38,41]. However, n-3 PUFAs had no
impact on nonraft organization under physiologically relevant
conditions [41]. Our model system addressed raft formation in the
outer leaflet of the plasma membrane since we measured cholera
toxin binding to GM1molecules. Our data were in agreement with an
electronmicroscopy study in vitrowith HeLa cells, which showed that
DHA treatment selectively disrupted lipid raft, but not nonraft,
domains of the inner leaflet [42]. Thus, recent data suggest that n-3
PUFAs are selectively disrupting lipid rafts of both the outer and inner
leaflets with little impact on nonraft organization.

If n-3 PUFAs directly incorporate into lipid rafts, then what is the
nature of the lipid raft domains? Given the steric incompatibility
between DHA acyl chains and lipid raft molecules, one would predict
that incorporation of n-3 PUFA acyl chains into rafts would disrupt
their molecular order. Two different labs have attempted to address
this issue, which have yielded opposite results.
Fig. 2. Proposedmodel on how n-3 PUFA acyl chains disrupt the molecular organization of mem
incorporating into the raft and then redistributing cholesterol toward nonrafts. As a consequ
proteins are likely declustered and forced into nonrafts. The order of events is shown for sim
The Chapkin lab showed that incorporation of n-3 PUFAs into the
immunological synapse of CD4+ T-cells from the fat-1 transgenic
mouse increased the molecular order of lipid rafts, as measured with
fluorescence polarization microscopy [43]. In contrast, the Harder lab
demonstrated, also with fluorescence polarization imaging, that EPA
treatment of Jurkat T-cells in vitro decreased the molecular order of
lipid rafts in the synapse [44]. Lipidomics in the same study revealed
significant incorporation of EPA into differing phospholipids with an
increase in a select sphingolipid species [44]. One reason for the
discrepancy was differential uptake of fatty acids between in vitro and
ex vivo studies [45]. Furthermore, in vitro studies only provided a
single fatty acid, whereas both EPA and DHA accumulated in T-cells
from the fat-1 transgenic mouse. Clearly, more studies are needed to
resolve how n-3 PUFAs are modifying the lipidome and molecular
order of rafts.

The consequences of disrupting lipid rafts on protein lateral
organization are also emerging. Recent imaging studies are overall
confirming the biochemical observations that n-3 PUFAs displace
proteins into or out of rafts. For instance, we discovered that DHA,
upon disrupting lipid raft clustering, forced the nonraft immuno-
logical protein, MHC (major histocompatibility complex) class I, into
lipid rafts [38]. We also recently observed with FRET imaging that
DHA and EPA could modify MHC I spatial organization on a
nanometer scale, which was driven by changes in plasma membrane
size [41]. Similarly, several other labs have shown with imaging or
biochemical approaches that protein–protein interactions, which are
brane lipid rafts and proteins. The model shows n-3 PUFAs declustering rafts by directly
ence, a nonraft protein such as MHC class I is forced into the lipid raft. Similarly, raft
plicity and may occur simultaneously.
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central to generate intracellular signaling, are modified with dietary
n-3 PUFAs. For instance, proteins essential for the activation of
immune cells or growth of differing cell types are modified by n-3
PUFAs, which leads to changes in downstream signaling, gene
expression and ultimately function [31,33–36,43,46].
6. Integrated model

In Fig. 2, we present a model on how n-3 PUFAs could disrupt lipid
raft organization and thereby protein lateral distribution. The model
is based on data from our lab and others from several model systems.
The model shows, as an example, that MHC class I proteins localized
to nonrafts. When n-3 PUFA acyl chains incorporate into the raft
(possibly as nanodomains as suggested by recent NMR data in model
membranes), the raft becomes declustered. The poor affinity between
n-3 PUFAs and cholesterol forces some of the cholesterol molecules to
move out of the raft into nonrafts, which contributes to the declus-
tering. The declustering event allows a protein such as MHC class I to
now move into the disrupted raft. The model is also applicable to
proteins localized within the lipid rafts. In this case, incorporation of
n-3 PUFA acyl chains into lipid rafts and subsequent declustering will
force raft-localized proteins from rafts into nonrafts.
7. Future directions

Determining the mechanism by which n-3 PUFA acyl chains
disrupt lipid raft spatial and temporal organization is in its infancy. As
listed above, there are several questions that arise from the bio-
chemical studies that are currently being addressed. Furthermore,
there are many other questions that require attention that are central
to developing a complete mechanism by which n-3 PUFAs disrupt
raft molecular organization. For instance, do EPA and DHA exert
differential effects on membrane raft organization? Our quantitative
studies in vitro with EL4 cells showed that DHA, but not EPA,
disrupted the clustering of lipid rafts [38]. However, our data are not
in agreement with another lab that showed that both EPA and DHA
disrupted lipid raft spatial distribution [30]. More studies are needed
to understand what the molecular differences are, especially at an
atomic scale, between EPA and DHA. As another example, how do EPA
and DHA modify the plasma membrane lipidome? Recent advances
have been with cell culture experiments [44], but studies at the
animal and human level are needed. Finally, it is essential to deter-
mine how changes in lipid raft organization with n-3 PUFAs impact
not just downstream signaling and gene expression but the impact on
function at the tissue and whole animal level.
8. Conclusion

The goal of this review was to highlight recent mechanistic
advances in biophysical and biochemical studies with n-3 PUFAs and
lipid rafts. As the field is rapidly evolving, some central themes are
emerging. DHA, and perhaps EPA, acyl chains are highly disordered,
which renders them incompatible with packed lipid raft molecules.
As a consequence, when lipid rafts are exposed to n-3 PUFAs, their
molecular composition and order are changed, which has conse-
quences for protein clustering and ultimately cellular function.
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